Nonsense-Mediated RNA Decay Influences Human Embryonic Stem Cell Fate
نویسندگان
چکیده
Nonsense-mediated RNA decay (NMD) is a highly conserved pathway that selectively degrades specific subsets of RNA transcripts. Here, we provide evidence that NMD regulates early human developmental cell fate. We found that NMD factors tend to be expressed at higher levels in human pluripotent cells than in differentiated cells, raising the possibility that NMD must be downregulated to permit differentiation. Loss- and gain-of-function experiments in human embryonic stem cells (hESCs) demonstrated that, indeed, NMD downregulation is essential for efficient generation of definitive endoderm. RNA-seq analysis identified NMD target transcripts induced when NMD is suppressed in hESCs, including many encoding signaling components. This led us to test the role of TGF-β and BMP signaling, which we found NMD acts through to influence definitive endoderm versus mesoderm fate. Our results suggest that selective RNA decay is critical for specifying the developmental fate of specific human embryonic cell lineages.
منابع مشابه
Nonsense-mediated mRNA decay: a ‘nonsense’ pathway makes sense in stem cell biology
Nonsense-mediated mRNA decay (NMD) is a highly conserved post-transcriptional regulatory mechanism of gene expression in eukaryotes. Originally, NMD was identified as an RNA surveillance machinery in degrading 'aberrant' mRNA species with premature termination codons. Recent studies indicate that NMD regulates the stability of natural gene transcripts that play significant roles in cell functio...
متن کاملSmg6/Est1 licenses embryonic stem cell differentiation via nonsense-mediated mRNA decay
Nonsense-mediated mRNA decay (NMD) is a post-transcriptional mechanism that targets aberrant transcripts and regulates the cellular RNA reservoir. Genetic modulation in vertebrates suggests that NMD is critical for cellular and tissue homeostasis, although the underlying mechanism remains elusive. Here, we generate knockout mice lacking Smg6/Est1, a key nuclease in NMD and a telomerase cofactor...
متن کاملGlobal analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay.
UPF1 is a DNA/RNA helicase with essential roles in nonsense-mediated mRNA decay (NMD) and embryonic development. How UPF1 regulates target abundance and the relationship between NMD and embryogenesis are not well understood. To explore how NMD shapes the embryonic transcriptome, we integrated genome-wide analyses of UPF1 binding locations, NMD-regulated gene expression, and translation in murin...
متن کاملNonsense-mediated mRNA decay among coagulation factor genes
Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation fact...
متن کاملDeep learning of the splicing (epi)genetic code reveals a novel candidate mechanism linking histone modifications to ESC fate decision
Alternative splicing (AS) is a genetically and epigenetically regulated pre-mRNA processing to increase transcriptome and proteome diversity. Comprehensively decoding these regulatory mechanisms holds promise in getting deeper insights into a variety of biological contexts involving in AS, such as development and diseases. We assembled splicing (epi)genetic code, DeepCode, for human embryonic s...
متن کامل